Deuterium Site Occupancies in Ce₂Ni₇D₄ and Comparison with CeNi₃D_{2.8}

Y. Filinchuk Laboratory of Crystallography, University of Geneva, Switzerland; Current: SNBL at ESRF, Grenoble, France

K. Yvon Laboratory of Crystallography, University of Geneva, Switzerland

Ce₂Ni₇ and CeNi₃ have closely related but distinctly different crystal structures in which CaCu₅-type and MgZn₂-type slabs alternate along the hexagonal axes. Both compounds react easily with hydrogen and form so-called "interstitial" hydrides of which one has been structurally characterized (CeNi₃D_{2.8} [1]). In spite of the structural differences their hydrogen equilibrium pressures at 50°C do not much differ: 0.2 bar for Ce₂Ni₇H_x and 0.1 bar for CeNi₃H_x. In contrast to the hexagonal La₂Ni₇D_{6.5} analogue [2] Ce₂Ni₇D₄ shows an orthorhombic distortion. A comparison with CeNi₃D_{2.8} shows that in both compounds deuterium enters only the MgZn₂-type slabs, resulting in an anomalous expansions along the hexagonal axes (~21% for Ce₂Ni₇D₄, ~30% for CeNi₃D_{2.8}), while their basal planes remain nearly unchanged. Both deuterides dispay Ni atoms having deformed tetrahedral D atom configurations: Ni-D bond lengths and D-Ni-D bond angles range 1.52-1.95 Å and 74-127°, respectively. These findings not only provide further evidence for directional bonding effects in hydrides that are traditionally considered as "interstitial" [3], but also suggest that the thermal stability of metal hydrides having composite crystal structures can be correlated with metal-hydrogen bond formation/breaking in specific structural units.

- [1] V. A. Yartys et al., J. Alloys Compd. 356-357 (2003) 109.
- [2] V. A. Yartys et al., J. Alloys Compd. 408-412 (2006) 273.
- [3] Y. E. Filinchuk et al., J. Alloys Compd. 413 (2006) 106.