Poster Th-019 DIRECTIONAL METAL-HYDROGEN BONDING IN INTERSTITIAL HYDRIDES, I - ErNi₃H_x (0<x<3.7) ## Y. Filinchuk, K. Yvon Laboratory of Crystallography, University of Geneva, Switzerland Hydrogenetion of ErNi₃ (rhombohedral PuNi₃ type structure) has been investigated by synchrotron and neutron powder diffraction. At least three hydride phases were found: β_1 : $x\sim1.3$; β_2 : $x\sim2$ and γ : $x\sim3.7$, the latter being stable only under hydrogen pressure (~100 bar). While the lattice expands mainly along c in the β -phases, it expands in the basal plane on transition to the γ -phases. In the β - phase hydrogen enters two types of interstitial sites in the AB_2 –type building block (see figure left). One (D1) corresponds to three ligands of a Ni centered NiH₄ tetrahedron, and the other (D2) bridges a Ni triangle. In the γ-phase D2 becomes nearly empty while four other interstitial sites become occupied. One (D4) completes the fourth ligand of the NiH₄ tetrahedron, and three (D3, D5, D6) are located in the AB_5 building block (see figure right). The formation of tetrahedral NiH₄ units suggests directional bonding effects similar to those in complex hydrides such as LaMg₂NiH₇ and Mg₂NiH₄. As expected these effects are similar to those in the nickel based analogoue β-HoNi₃H_x but different from those in the cobalt analogues β- and γ-YCo₃H_x. This demonstrates that hydrogen atom distributions in interstitial metal hydrides cannot be rationalized by geometrical considerations alone.