UNIVERSITÉ DE GENÈVE

Magnesium borohydride : synthesis and crystal structure

Radovan Černý*, Yaroslav Filinchuk*,***, Hans Hagemann**, and Klaus Yvon*

*Laboratory of Crystallography, **Dpt. of Physical Chemistry, University of Geneva, Switzerland **Swiss Norwegian Beam Lines at ESRF, Grenoble, France

Ca(BH₄)₂

Be(BH₄)₂

Figure 1. Structural comparison of the $M(BH_4)_2$ series' members, M (in blue) = Mg and Ca: 3-d framework; Be: 1-d polymer. Coordination of Mg5 is shown for Mg(BH_4)₂.

Figure 2. Raman spectra of Mg(BH(D)₄)₂ (in red) and Figure 2. Raman spectra of mg($dn(r)_{4/2}$ (inter) and LiBH(D)₄ (in blue). Upper curves: deuteride, lower curves: hydride. The asterisk indicates a band resulting from residual diethyl-ether.

Figure 3. Observed (red), calculated (black) and difference (bottom) synchrotron powder diffraction patterns for Mg(BD₄)₂, $\lambda = 0.40008$ Å. The Bragg positions for individual phases are shown with ticks.

Figure 4. Observed (red), calculated (black) and difference (bottom) neutron powder diffraction patterns for Mg(BD₄)₂, $\lambda = 1.8857$ Å The Bragg positions for individual phases are shown with ticks

Mg(BD₄)₂ at 20°C: $P6_1$, a = 10.3182(1), c = 36.9983(5) Å, V = 3411.3(1) Å³

Five symmetry independent Mg²⁺ ions and ten symmetry-independent [BD₄] ions. The Mg²⁺ and [BD₄] ions are connected into a novel three-dimensional framework. All Mg²⁺ cations have similar atomic environments

BD₄ tetrahedra as semirigid bodies with ideal tetrahedral bond angles and a common refined BD distance of 1.18(1) Å.

Each Mg²⁺ ion is surrounded by four [BD₄] tetrahedra arranged in a deformed tetrahedron (Mg-B 2.31(3)-2.53(2) Å; B-Mg-B 83(2)-131(2) deg). Each [BD,] ion is approximately linearly coordinated by two Mg² ions (Mg-B-Mg 148(1)–177(2)deg).

The orientation of the [BD₄] tetrahedra is such that each Mg²⁺ ion is coordinated by tetrahedral edges only (μ_2 -D₂ bridges), resulting in an unusual eightfold, relatively irregular hydrogen coordination environment

Mg-D distances in the range of 1.81(4)–2.25(5) Å, with the exception of one longer distance of 2.46(8) Å.

The increase of the hydrogen coordination number from six (for Be²⁺) to eight (for Mg²⁺) and twelve (for Ca²⁺) suggests that cation size is one of the reasons that Mg(BD_4)₂ does not adopt one of the simpler structures of its alkaline-earth analogues.

The structure of $Mg(BD_4)_2$ differs from those of its beryllium calcium analogues, as well as from those predicted by theory [1,2].

The structure is one of the most complex atom arrangements solved from powder diffraction data so far

	LiBD ₄	LiBH ₄	Mg(BH ₄) ₂	Mg(BD ₄) ₂
υ ₁ + υ ₃ B-H(D) stretching +Fermi resonance	1730 1705 1603	2321sh 2275 2301	2334sh 2283sh 2308vs	1733 1716 1674 1654 1606
v ₂ + v ₄	989 856 838sh	1316 1286 1235 1099 1090	1388 1310 1288 1205 1190 1126w 1088w 1039w	946 924 830 802 775
Lattice modes	673 366 245	285 255 189	670 248 204 195 172	

Table 1. Observed Raman shifts (in cm-1) for lithium and magnesium borohydride at room temperature (see Figure 2) vs = very strong, sh = shoulder, w = weak.

Synchrotron X-ray and neutron diffraction:

A powder synchrotron X-ray diffraction (S) pattern for $Mg(BD_4)_2$ was measured over 24 h at room temperature using synchrotron radiation (x=0.400080(1) Å) at the Swiss-Norwegian Beam Line BM1B of the ESRF (Grenoble).

A powder neutron diffraction (N) pattern was measured for the same sample at 100°C using neutron radiation (A=1.8857 Å) on the HRPT at the Swiss Spallation Source (SINQ) of the PSI (Villigen).

The S data were indexed in a hexagonal cell by using Dicvol96. The structure was solved jointly from the S and N data by direct-space methods (program FOX [4]) in space group $P6_1$.

Five magnesium atoms and ten BD, groups were refined jointly on the S and N data by using TOPAS Academic [5]. The BD, tetrahedra were kept as semirigid bodies with ideal tetrahedral bond angles and a common refined BD distance.

In the final cycle, 186 parameters were refined, yielding the agreement factors of R_{wp} =0.048, R_{Bragg} (main phase)=0.034, and χ^2 =1.6 for the S data, and of R_{wp} =0.018, R_{Bragg} (main phase)=0.008, and χ^2 =7.45 for the N data.

Nine S patterns were collected over the temperature range 100–200°C to check for the phase transition reported in reference [6]. A transition to a HT phase was indeed observed at approximately 180°C. The HT phase is possibly unstable above this temperature. Its diffraction peaks were not consistent with a hypothetical cubic Cu₂O-type metal substructure nor with a face-centered cubic structure ($a \sim 15.5$ Å) as reported in reference [6].

- P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvåg, *Appl. Phys. Lett.* 2006, **89**, 071906 Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. Towata, A. Züttel, S. Orimo, *Phys. Rev. B* 2006, **74**, 045126 G. Renaudin, S. Gomes, H. Hagemann, L. Keller, K. Yvon, *J. Alloys Compd.* 2004, **375**, 98 106 V. Farve-Nicolin, R. Cemy, *J. Appl. Crystallogr.* 2002, **35**, 734 743, *http://doi.org.sourceforge.net/Fox* A. A. Coelho, TOPAS-Academic, *http://members.oplusnet.com.au/alancoelho*, 2004 [2] [3] [4]
- A. A. Coelho, TOPAS-Academic, http://members.optusnet.com.au/alan V. N. Konoplev, V. M. Bakulina, Russ. Chem. Bull. 1971, 20, 136 –138

Structure of Mg(BH₄)₂ v ong the h Figure 5. Structure of Mg(BH)₂ viewed along the hexagonal *b* axis, showing two unit cells. Red (partially transparent) tetrahedra are BH₄ units; Mg atoms in blue. Considering the cations as A and the tetrahedral anions as B, the resulting threedimensional framework, in which each tetrahedron AB₄ shares all of its vertices with another tetrahedron, resembles the frameworks of oxides and aluminosilicates, which generally display nearly linear A-B-A fragments

Synthesis:

Commercial LiBH₄ or LiBD₄ (2 g, 91.8 mmol; and anhydrous MgCl₂ (4 g, 42 mmol) were introduced into a 500-ml flask containing dry diethyl ether (300 ml). The mixture was heated under reflux for 3 days in a nitrogen atmosphere, and ether was repeatedly added to compensate for evaporation losses. The reaction mixture was allowed to cool for 1 h. Then the liquid phase was removed using a syringe equipped with a small filter and collected in a new flask. The ether was removed under racum ($10^{2}-10^{3}$ mbar, liquid-nitrogen trap) at room temperature, leaving a white paste of solvated Mg(BH₄)₂ or Mg(BD₄)₂ and other commonids. compounds

Upon careful drying under vacuum at increasing temperatures (50, 70, 90, 110, 130, and 145°C) over 3 or 10 days (in two different experiments), a dry solid was obtained. X-ray analysis revealed the presence of some LiCl, Ll₂MgCl₄, and LlBH₄ or LlBD₆ in addition to the main phase Mg(BH₄)₂ or Mg(BD₄)₂ (yield ca. 30%). Above 150°C, the sample started to decompose.

For samples heated to only 120° C, ether was detected in the Raman spectrum; these samples were not sufficiently well-crystallized for high-resolution diffraction studies.

nan spectra

In the BH stretching region (around 2300 cm $^{\text{-1}}),$ the spectra of $\text{Mg}(\text{BH}_4)_2$ and LiBH, are similar, while those of the corresponding deuterides are more complex

In the bending region (1000-1400 $\rm cm^{-1}),$ the spectra of the hydrides and the deuterides show significant differences.

By correlating the BD stretching frequency with the BD bond length, as was done for the cubic alkali-metal borohydrides [3], a frequency of 1605 cm⁻¹ suggests a bond length of 1.17 Å. as was

Figure 6. Considering the cations (A) only, the Mg^{2*} network ($Mg \cdots Mg > 4.6$ Å) resembles an amorphous state on a local level. Four-connected

