Acta Crystallographica Section C Crystal Structure Communications	
ISSN 0108-2701	
Partial Sn-atom ordering in Sm ₃ Ga _{0.80}	$_{02.48}Sn_{4.202.52}$
Yaroslav O. Tokaychuk, Yaroslav E. Filinch Bodak	
Copyright © International Union of Crystallography	
Author(s) of this paper may load this reprint on their own web site provide storage in electronic databases or the like is not permitted without prior p	led that this cover page is retained. Republication of this article or its ermission in writing from the IUCr.
Acta Cryst. (2003). C 59 , i125–i127	Yaroslav O. Tokaychuk <i>et al.</i> • Sm ₃ Ga _{1,89} Sn _{3,1}

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

Partial Sn-atom ordering in $Sm_3Ga_{0.80-2.48}Sn_{4.20-2.52}$

Yaroslav O. Tokaychuk, a,b* Yaroslav E. Filinchuk, Anatoliy O. Fedorchuk and Oksana I. Bodak

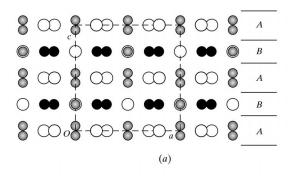
^aLaboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland, and ^bDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodiya Street 6, Lviv 79005, Llkraine

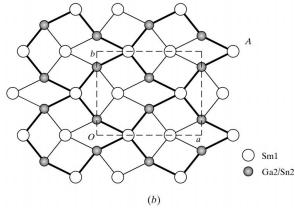
Correspondence e-mail: yaroslav.tokaychuk@cryst.unige.ch

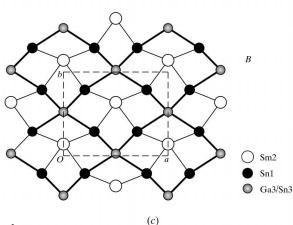
Received 4 August 2003 Accepted 28 October 2003 Online 8 November 2003

Trisamarium digallide tristannide crystallizes with a partially ordered Pu_3Pd_5 -type structure in space group *Cmcm*. In a single crystal of $Sm_3Ga_{1.89(4)}Sn_{3.11(4)}$, the 8g position is mostly occupied by Sn atoms (93% Sn and 7% Ga), while the 4c and 8f positions are occupied by a Ga/Sn statistical mixture. The evolution of the structure as a function of the Ga content has been studied by X-ray powder diffraction on ten $Sm_3Ga_{5-x}Sn_x$ samples. It is shown that the 8g position remains occupied essentially exclusively by Sn atoms within the whole homogeneity range, with x ranging from 2.52 to 4.20.

Comment

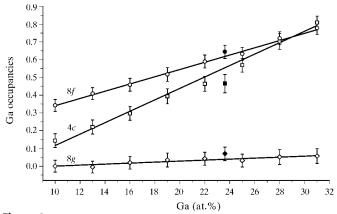

Among numerous intermetallic compounds crystallizing with a Pu₃Pd₅ structure type (Cromer, 1976), only one ternary compound, Er₃Ga₂Ge₃, has been reported to date (Welter & Venturini, 1999). In spite of the negligible contrast between Ga and Ge atoms in their non-resonant X-ray diffraction experiment, Welter & Venturini assumed a partially ordered Ga/Ge distribution, though admitting that 'the evolution of the structure as a function of the Ga content is not well understood'. We present here the structure of an Sm₃Ga_{5-x}Sn_x compound that crystallizes with the Pu₃Pd₅ structure across a wide compositional range. The considerable difference between the atomic scattering factors for Ga and Sn enables an accurate refinement of the Ga/Sn distribution over three main-group atom positions.


In a single crystal of $Sm_3Ga_{1.89}Sn_{3.11}$, extracted from an alloy of composition close to $Sm_3Ga_2Sn_3$, the 8g position (labelled Sn1 in Fig. 1) was found to be mostly occupied by Sn atoms (93% Sn and 7% Ga), while the 4c and 8f positions (Ga3/Sn3 and Ga2/Sn2, respectively) are occupied by a Ga/Sn statistical mixture, with a strong preference of Ga atoms for the 8f position (Table 1).


A powder diffraction study of ten $Sm_3Ga_{5-x}Sn_x$ samples has shown that the structure is preserved within 10–31 at.% of Ga.

Cell parameters and nominal compositions for the eight single-phase samples are listed in Table 2. For all eight samples, the atomic positional and occupancy parameters were refined by the Rietveld method, in order to clarify the evolution of Ga/Sn site occupancies as a function of Ga content. As can be seen from Fig. 2, within the limits of three standard uncertainties, the 8g position remains exclusively occupied by Sn atoms over the whole concentration range. In contrast, Sn atoms in the 4c and 8f positions are gradually substituted by Ga, as the nominal Ga content increases.

The structure of the title compound can be described by the stacking along the c axis of two different layers (Fig. 1a). Layer



(a) The structure of $Sm_3Ga_{5-x}Sn_x$, represented by the stacking of two different layers, A and B. (b) The A layer, a distorted NaCl-type layer. (c) The B layer, a distorted layer of the tetragonal InLiO₂-type structure (Hoppe & Schepers, 1958).

inorganic compounds

Figure 2The variation of Ga content in three Ga/Sn positions plotted *versus* nominal Ga content. The single-crystal data are shown by the filled symbols. The three-standard-uncertainty limits are marked off with error bars.

A (z=0 and $z=\frac{1}{2}$, mapped by a mirror plane) is built of Sm1 and Ga2/Sn2 atoms in a distorted NaCl manner (Fig. 1b). Layer B ($z=\frac{1}{4}$ and $z=\frac{3}{4}$, mapped by a 2_1 screw axis) is an ordered substitutional derivative of layer A (Fig. 1c); while the Ga/Sn position becomes fully occupied by Sn1 atoms, half of the Sm atoms are replaced with a Ga3/Sn3 statistical mixture. Thus, layer B corresponds to a distorted layer of the tetragonal InLiO₂ structure type (Hoppe & Schepers, 1958), an ordered derivative of the NaCl structure type.

The shortest distances between the Sm and main-group element atoms correlate with the corresponding Ga/Sn occupancies. For the ordered atom Sn1, the distance is 3.1718 (7) Å, for Ga3/Sn3, nearly equally occupied by Ga and Sn atoms, it is 3.0775 (14) Å, and for the Ga-rich Ga2/Sn2 position, the shortest distance to an Sm atom is 3.0003 (10) Å (Table 3).

Experimental

A single crystal of $\rm Sm_3Ga_{1.89}Sn_{3.11}$ was extracted from an arc-melted $\rm Sm_{40}Ga_{20}Sn_{40}$ ingot annealed at 870 K for one month. To investigate an evolution of the structure as a function of the Ga content, ten alloys with nominal compositions $\rm Sm_{37.5}Ga_{7-34}Sn_{55.5-28.5}$ were additionally prepared, with each sample weighing 2 g and subjected to arc-melting (with weight losses of less than 0.5%) and subsequent annealing at 870 K for one month. The X-ray powder diffraction patterns were recorded at room temperature with a Bruker D8 Advance diffractometer (Cu $K_{\alpha 1}$ radiation, $2\theta_{\rm min/max} = 20$ – 120° , increment in $2\theta = 0.0144^{\circ}$). One scale factor, ten profile and seven structural parameters were refined for each composition by the Rietveld method, using the FULLPROF2002 program package (Rodriguez-Carvajal, 1990).

Crystal data

Sm ₃ Ga _{1.89} Sn _{3.11}	Mo $K\alpha$ radiation
$M_r = 951.80$	Cell parameters from 1823
Orthorhombic, Cmcm	reflections
a = 9.9680 (13) Å	$\theta = 4.0 30.0^{\circ}$
b = 7.9720 (17) Å	$\mu = 37.38 \text{ mm}^{-1}$
c = 10.056 (2) Å	T = 293 (1) K
$V = 799.1$ (3) $Å^3$	Plate-like, metallic light grey
Z=4	$0.07 \times 0.06 \times 0.03 \text{ mm}$
$D_x = 7.911 \text{ Mg m}^{-3}$	

Data collection

Stoe IPDS diffractometer	$R_{\rm int} = 0.060$
φ oscillation scans	$\theta_{\rm max} = 30.0^{\circ}$
Absorption correction: analytical	$h = -13 \rightarrow 14$
(X-RED; Stoe & Cie, 1999)	$k = -11 \rightarrow 10$
$T_{\min} = 0.155, T_{\max} = 0.414$	$l = -14 \rightarrow 14$
3252 measured reflections	200 standard reflections
640 independent reflections	frequency: 10 min
556 reflections with $I > 2\sigma(I)$	intensity decay: none
Refinement	
T 2	4 (5 2 (7 2) (6 6 6 4 7)

,	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.031P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.024$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.053$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.99	$\Delta \rho_{\text{max}} = 2.47 \text{ e Å}^{-3}$
640 reflections	$\Delta \rho_{\min} = -2.61 \text{ e Å}^{-3}$
29 parameters	

Table 1 Fractional atomic coordinates, occupancies and Wyckoff symbols for $Sm_3Ga_{1.89}Sn_{3.11}$.

Atom site	Wyckoff symbol	x	у	z	Occupancy
Sn1	8g	0.20466 (6)	0.28795 (8)	0.25	0.930 (12)
Ga1	8g	0.20466 (6)	0.28795 (8)	0.25	0.070(12)
Sn2	8f	0	0.31416 (11)	0.04613 (8)	0.356 (12)
Ga2	8 <i>f</i>	0	0.31416 (11)	0.04613 (8)	0.644 (12)
Sm1	8 <i>e</i>	0.20025 (4)	0	0	1
Sn3	4c	0	0.02592 (13)	0.25	0.535 (17)
Ga3	4c	0	0.02592 (13)	0.25	0.465 (17)
Sm2	4c	0	0.63989 (8)	0.25	1

Table 2 Cell parameters for the eight $Sm_3Ga_{0.80-2.48}Sn_{4.20-2.52}$ ($Sm_{37.5}Ga_{10-31}-Sn_{52.5-31.5}$) single-phase samples.

Ga (at.%)	a (Å)	b (Å)	c (Å)	$V(\mathring{A}^3)$
10	9.97522 (18)	8.02642 (16)	10.23304 (19)	819.31 (3)
13	9.96543 (17)	8.01286 (16)	10.1906 (2)	813.73 (3)
16	9.95661 (19)	7.99150 (18)	10.1297 (2)	806.00 (4)
19	9.9488 (2)	7.9686 (2)	10.0739 (3)	798.64 (4)
22	9.9402 (2)	7.9490 (2)	10.0367 (3)	793.04 (4)
25	9.9268 (3)	7.9255 (2)	9.9945 (3)	786.32 (4)
28	9.91021 (13)	7.89376 (11)	9.94854 (16)	778.26 (2)
31	9.89433 (18)	7.87246 (16)	9.91703 (19)	772.46 (2)

Table 3 Selected interatomic distances (Å) in $Sm_3Ga_{1.89}Sn_{3.11}$.

Sn1-Sn2	2.8997 (8)	$Sn2-Sm1^{iv}$	3.2360 (9)
Sn1-Sn3	2.9198 (10)	Sn2-Sm2	3.3085 (11)
$Sn1-Sm2^{i}$	3.1718 (7)	$Sm1-Sn1^{v}$	3.1743 (6)
$Sn1-Sm1^{ii}$	3.1743 (6)	Sm1-Sn3	3.2167 (5)
Sn1-Sm1	3.4046 (7)	$Sm1-Sn2^{iv}$	3.2360 (9)
Sn1-Sm2	3.4689 (10)	Sn3-Sn1 ^{vi}	2.9198 (10)
Sn2-Sm2 ⁱⁱⁱ	3.0003 (10)	$Sn3-Sm2^{vii}$	3.0775 (14)
Sn2-Sn3	3.0794 (12)	Sn3-Sm1 ^{viii}	3.2167 (5)
Sn2-Ga2 ⁱⁱⁱ	3.1049 (18)		

Symmetry codes: (i) $\frac{1}{2} + x, y - \frac{1}{2}, z$; (ii) $\frac{1}{2} - x, \frac{1}{2} - y, \frac{1}{2} + z$; (iii) -x, 1 - y, -z; (iv) -x, -y, -z; (v) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (vi) $-x, y, \frac{1}{2} - z$; (vii) x, y, -1, z; (viii) $x, y, \frac{1}{2} - z$.

The atomic positions were standardized with the *STRUCTURE TIDY* program (Gelato & Parthé, 1987). In the final difference Fourier map, all peaks greater than 1 e \mathring{A}^{-3} (maximum 2.47 e \mathring{A}^{-3}) were located within 1 \mathring{A} of the atomic positions.

Data collection: *EXPOSE* in *IPDS Software* (Stoe & Cie, 1999); cell refinement: *CELL* in *IPDS Software*; data reduction: *INTE-GRATE* in *IPDS Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 1993); software used to prepare material for publication: *SHELXL*97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1031). Services for accessing these data are described at the back of the journal.

References

Cromer, D. T. (1976). Acta Cryst. B32, 1930-1932.

Dowty, E. (1993). *ATOMS*. Version 2.3. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.

Hoppe, R. & Schepers, B. (1958). Z. Anorg. Allg. Chem. 295, 233-240.

Rodriguez-Carvajal, J. (1990). FÜLLPROF. Abstracts of the Satellite Meeting on Powder Diffraction of the XVth Congress of the IUCr, Toulouse, France, p. 127.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Stoe & Cie (1999). X-RED (Version 1.19) and IPDS Software (Version 2.92). Stoe & Cie, Darmstadt, Germany.

Welter, R. & Venturini, G. (1999). Acta Cryst. C55, 1969-1970.