Supplementary material

Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy

D. B. Ravnsbæk^a, C. Frommen^b, D. Reed^c, Y. Filinchuk^{a,d,e}, M. Sørby^b, B. C. Hauback^b, H. J. Jakobsen^f, D. Book^c, F. Besenbacher^g, J. Skibsted^f, T. R. Jensen^{*a}

^{a)} Center for Materials Crystallography (*CMC*), Interdisciplinary Nanoscience Center (*iNANO*), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark

^{b)} Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller, Norway

^{e)} Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain

^{c)} Metallurgy and Materials, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

^{d)} Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble, France

Place L. Pasteur, B-1348, Louvain-la-Neuve, Belgium

^{f)} Instrument Centre for Solid-State NMR Spectroscopy and Interdisciplinary Nanoscience Center (*iNANO*), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark

^{g)} Interdisciplinary Nanoscience Center (*iNANO*) and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Århus C, Denmark

Atom	Wyck.	x/a	y/b	z/c	$U [\text{\AA}^2]$
Zn1	8f	0	0.6440(10)	0.7665(11)	0.0377(6)
Zn2	8f	0	0.4252(12)	0.6300(16)	0.0377(6)
Li1	8f	0	0.138(6)	0.434(6)	0.0300(13)
B1	8f	0	0.2580(4)	0.3166(5)	0.0574(24)
D11	8f	0	0.1912(4)	0.3101(17)	0.0778(10)
D12	8f	0	0.2807(10)	0.3903(5)	0.0778(10)
D13	16g	0.1153(7)	0.2798(7)	0.2804(7)	0.0778(10)
B2	8f	0	0.3513(4)	0.0903(5)	0.0574(24)
D21	8f	0	0.2971(5)	0.0442(8)	0.0778(10)
D22	8f	0	0.4090(5)	0.0505(9)	0.0778(10)
D23	16g	0.1136(7)	0.3488(10)	0.1355(5)	0.0778(10)
B3	8f	0	0.5320(4)	0.7016(4)	0.0574(24)
D31	8f	0	0.4746(5)	0.7421(9)	0.0778(10)
D32	8f	0	0.5264(14)	0.6238(5)	0.0778(10)
D33	16g	0.1145(7)	0.5662(5)	0.7223(9)	0.0778(10)
B4	16g	0.2284(8)	0.3825(4)	0.5882(4)	0.0574(24)
D41	16g	0.1551(14)	0.4234(6)	0.5415(7)	0.0778(10)
D42	16g	0.3368(10)	0.4186(7)	0.6142(11)	0.0778(10)
D43	16g	0.1591(14)	0.3629(10)	0.6520(6)	0.0778(10)
D44	16g	0.2550(19)	0.3297(5)	0.5424(8)	0.0778(10)

Table S1: The refined crystal structure of LiZn₂(¹¹BD₄)₅ from PND data at 295K

The space group is *Cmca* and unit cell dimensions are: a = 8.6031(13) Å, b = 17.8876(4) Å, c = 15.3598(3) Å, and Z = 8. Atomic coordinates and isotropic displacement factors for LiZn₂(¹¹BD₄)₅ are given above. The agreement factors are $R_{wp} = 2.78$ %, $R_p = 2.22$ %, and $\chi^2 = 1.56$ (not corrected for background).

Table S2: Selected interatomic distances (Å) and angles (°) in LiZn₂(¹¹BD₄)₅

Zn1-D13		Avera 2x 1.833(ge: 18)	Zn-D	1.84
Zn1-D23	2x	1.799(16)	,		
Zn1-D33	2x	1.835(18)			
Zn2-D31		1.96(3)			
Zn2-D32		1.81(3)			
Zn2-D41	2x	1.91(2)			
Zn2-D43	2x	1.79(2)			
Zn1-B1		2.168(19)	Zn-B	2.20	
Zn1-B2 2	.201(19)			
Zn1-B3		2.238(19)			
Zn2-B3		2.20(2)			
Zn2-B4	2x	2.204(12)			
B1-Zn1-B2		123.9(7)	B-Zn-B	119.9	
B1-Zn1-B3		117.5(7)			
B2-Zn1-B3		118.6(7)			
B4-Zn2-B4		126.2(9)			
B4-Zn2-B3	2x	116.5(9)			
Li1-D11		2.13(10)	Li-D	2.13	
Li1-D12		2.64(11)			
Li1-D21		2.05(10)			
Li1-D22		1.98(10)			
Li1-D42	2x	1.88(7)			
Li1-D44	2x	2.22(4)			
Li1-B1		2.80(10)	Li-B	2.50	
Li1-B2		2.41(9)			
Li1-B4	2x	2.39(2)			
B1-Li1-B	2	125(3)			
B1-Li1-B	4	2x 91(3)			
B2-Li1-B4		2x 99(3)			
B4-Li1-B	4	156(4)			
Li1-B1-Zn1		176.0(17)	Li-B-2	Zn	169.8
Li1-B2-Zn1		173(3)			
Li1-B4-Zn2	2x	165(2)			

(Table S2 continued)

B1-D1	1 1.199(10)	D11-B1-D12	114.5(10)	
B1-D12	1.203(12)	D11-B1-D13	2x 106.5(10)	
B1-D13 2x	1.202(9)	D12-B1-D13	2x 109.0(9)	
	D13-B1-B13	111.2(8)		
B2-D2	1 1.201(13)	D21-B2-D2	22 113.2	2(8)
B2-D22	1.200(13)	D21-B2-D23	2x 108.1(8)	
B2-D23 2x	1.200(8)	D22-B2-D23	2x 109.1(9)	
	D23-B2-D23	109.1(9)		
B3-D31	1 201(13)	D31-B3-D32	1164(10)	
B3-D32	1 199(10)	D31_B3_D33	2x 107 3(8)	
B3-D32 R3-D33 2x	1 202(9)	D32-B3-D33	2x 107.5(0) 2x 107.8(10)	
D 5 D 55 Z A	D33-B3-D33	110.0(8)	2/ 10/.0(10)	
B4-D41	1.203(13)	D41-B3-D42	106.1(9)	
B4-D42	1.203(13)	D41-B3-D43	113.8(9)	
B4-D43	1.200(13)	D41-B4-D44	103.2(9)	
B4-D44	1.200(13)	D42-B4-D43	105.7(10)	
	D42-B4-D44	118.0(10)		
		D43-B3-	-D44	110.1(10)
Avorago				
$R_1 = D + 1 = 202$	D_R1_D	109.5		
B1-D 1.202 B2-D 1.200	D-B1-D D-B2-D	109.5		
B2 D 1.200 B3-D 1.201	D_B3_D	109.4		
B3-D 1.201 B4-D 1.202	D-B3-D D-R4-D	109.5		
Br D 1.202	ע דע ע	107.5		
B-D 1.201	D-B-D	109.5		

Fig. S1: Powder neutron diffraction pattern for $\text{LiZn}_2(^{11}\text{BD}_4)_5$ (sample A) measured at 295 K showing observed (circles), calculated (upper line) and difference (bottom line) plots. The position of the Bragg reflections are shown as tic marks for $\text{LiZn}_2(^{11}\text{BD}_4)_5$ (lower), LiCl (middle), and ZnCl₂ (upper) ($\lambda = 1.55499$ Å).