Copper(I) π-Complexes with Allyl Derivatives of Guanidine. Synthesis and Crystal Structure of [(CH₂=CH–CH₂–NH=)₂C=NH₂]Cu₂Cl_{3-x}Br_x (x = 1.36)

Ya. E. Filinchuk and M. G. Mys'kiv

Franko State University, ul. Kirila i Mefodiya 6, Lviv, 290005 Ukraine Received July 30, 1998

Abstract—Ac electrochemical synthesis was used to prepare crystals of the $[(CH_2=CH-CH_2-NH=)_2C=NH_2]Cu_2Cl_{3-x}Br_x$ (x = 1.36) compound (**I**), and its structure was determined [a DARCh diffractometer, Mo K_{α} radiation, a = 9.694(3), b = 8.754(2), c = 7.971(3) Å, $\alpha = 100.27(2)^\circ$, $\beta = 95.39(3)^\circ$, $\gamma = 100.74(2)^\circ$,

V = 648.3(7) Å³, space group $P\bar{1}$, Z = 2, R = 0.050 for 1175 independent reflections with $F \ge 4\sigma(F)$]. The coordination sphere of one of the copper atoms is a distorted tetrahedron formed from three halogen atoms and the C=C bond, and that of the other copper atom is planar-trigonal and consists of two halogen atoms and the C=C bond. The lengths of the coordinated double bonds of both allyl groups are equal to 1.34(2) Å. Complex I is structurally similar to the previously studied π -complex of diallylammonium [(C₃H₅)₂NH₂]Cu₂Br₃.

INTRODUCTION

Previous studies on the π -complexation of diallylammonium salts with copper(I) halides have demonstrated that this cation can be coordinated to a metal atom in different ways, depending on the stoichiometry of the compound [1–4]. Hydrogen atoms of the protonated amino group form strong hydrogen bonds that additionally stabilize the structure. It was of interest to examine behavior of a gaunidine ligand, because it contains three nitrogen atoms and, hence, is a more basic derivative than ammonia. Besides, investigation of the coordination of protonated allyl-substituted guanidines in the copper(I) π -complexes is of interest, because the ionic copper(I) π -complexes with unsaturated derivatives of azomethines are poorly studied [5, 6]. For this purpose, the copper(I) π -complex [(CH₂=CH–CH₂– NH=)₂C=NH₂]Cu₂Cl_{3-x}Br_x (x = 1.36) (I) was synthesized and its crystal structure was studied.

EXPERIMENTAL

N,*N*'-Diallylguanidinium bromide (DAGUNBr) was synthesized from *N*-allyl-*S*-ethylisothiouronium bro-

Parameter	Ι	Parameter	Ι		
М	434.3	Radiation	MoK _α		
<i>F</i> (000)	421	Diffractomer	DARCh		
Space group	$P\bar{1}$	Scan technique	$\theta/2\theta$		
<i>a</i> , Å	9.694(3)	Number of reflections:			
<i>b</i> , Å	8.754(2)	measured	1348		
<i>c</i> , Å	7.971(3)	independent with $F \ge 4\sigma(F)$	1175		
α, deg	100.27(2)	$2\theta_{\rm max}$, deg	49		
β, deg	95.39(3)	Number of refined parameters	203		
γ, deg	100.74(2)	R	0.050		
$V, Å^3$	648.3(7)	R_{w}	0.054		
Ζ	2	Weighed scheme	$\left[\sigma(F_o)^2 + 0.0022 F_o^2 \right]^{-1}$		
ρ (calcd), g/cm ³	2.226(2)	GOOF	1.16		
μ_{Mo}, cm^{-1}	81.57				

Table 1. Crystallographic data and data collection parameters for complex I

7 Hom		y y	۷.	D, A
Cu(1)	0.8990(2)	0.4878(2)	-0.1748(2)	3.76(5)
Cu(2)	0.4137(2)	0.7639(2)	0.3775(2)	4.42(5)
X(1)	0.8221(2)	0.2002(2)	-0.3269(2)	3.52(5)
X(2)	0.1536(2)	0.5143(2)	-0.1100(2)	3.18(7)
X(3)	0.5311(2)	0.2109(3)	-0.6715(2)	6.14(8)
N(1)	0.808(1)	0.831(1)	0.012(1)	3.7(3)
N(2)	0.740(1)	0.951(1)	0.265(1)	3.4(3)
N(3)	0.765(1)	0.086(1)	0.046(1)	3.9(3)
C(1)	0.876(2)	0.598(2)	-0.385(2)	4.3(4)
C(2)	0.800(1)	0.656(1)	-0.266(1)	3.1(3)
C(3)	0.845(2)	0.823(2)	-0.156(2)	3.7(4)
C(4)	0.771(1)	0.954(1)	0.107(1)	2.9(3)
C(5)	0.727(1)	0.812(1)	0.343(1)	3.2(4)
C(6)	0.590(1)	0.691(1)	0.279(2)	3.8(4)
C(7)	0.494(2)	0.701(2)	0.150(2)	4.1(4)
H(1.1)	0.970(9)	0.660(9)	-0.40(1)	1(2)
H(1.2)	0.83(1)	0.50(2)	-0.48(2)	5(4)
H(2.1)	0.70(1)	0.61(1)	-0.28(1)	3(2)
H(3.1)	0.80(1)	0.88(1)	-0.20(1)	2(3)
H(3.2)	0.93(1)	0.85(1)	-0.16(1)	2(2)
H(5.1)	0.746(9)	0.85(1)	0.46(1)	2(2)
H(5.2)	0.81(1)	0.77(1)	0.32(1)	4(3)
H(6.1)	0.58(1)	0.59(1)	0.32(1)	3(2)
H(7.1)	0.44(1)	0.63(1)	0.13(2)	4(3)
H(7.2)	0.507(8)	0.78(1)	0.08(1)	1(2)
H(1)	0.821(7)	0.781(8)	0.058(8)	1(1)
H(2)	0.670(8)	0.024(9)	0.299(9)	1(2)
H(3)	0.71(1)	0.14(1)	0.11(2)	5(3)
H(4)	0.76(2)	0.08(2)	-0.03(2)	11(5)

Table 2. Atomic coordinates and thermal parameters* for structure I

* For non-hydrogen atoms $B_{eq} = 1/3 \sum_{i} \sum_{j} B_{ij} a_i^* a_j^* \dot{a}_i \dot{a}_j$.

** Site occupancy factors $G(X_i)$: X(1) = 0.474(9)Cl + 0.526(9)Br, X(2) = 0.732(8)Cl + 0.268(8)Br, and X(3) = 0.43(1)Cl + 0.57(1)Br.

mide (derived from allylthiourea and ethyl bromide according to [7]) and allylamine by the modified method [8]. Complex I in the form of well-edged colorless triclinic prisms was obtained by ac electrochemical reduction of Cu(II) to Cu(I) (U = 0.3 V, I =0.21 mA) on the copper electrodes in an ethanol solution containing CuCl₂ and DAGUNBr. Air-stable crystals of compound I grew during 20 h and did not decompose during the X-ray experiment.

After a preliminary study by photography, the structure was solved using the diffraction data measured on a DARCh single crystal diffractometer; the intensities of reflections were corrected for the Lorentz and polarization effects. The structure was solved by the direct methods, all light and H atoms being determined from the difference Fourier syntheses. Full-matrix anisotropic refinement of all the non-hydrogen atoms (isotropic for hydrogen atoms) and absorption correction (DIFABS program) were performed using the CSD program package [9].

Crystallographic data and data collection parameters for structure I are summarized in Table 1. Atomic coordinates and thermal parameters are presented in Table 2. Interatomic distances and bond and torsion angles are listed in Table 3.

RESULTS AND DISCUSSION

The presence of a positive charge delocalized over the conjugated guanidine group reduces the donating

Bond**	<i>d</i> , Å	Angle	**	ω, deg	Bond**		<i>d</i> , Å	Angle**		ω, deg
Cu(1)–X(1)	2.531(3)	X(1)Cu(1)	X(2)	101.8(1)	N(1)–C(4)	1	.33(1)	C(3)N(1)C(4)		126(1)
Cu(1)–X(2)	2.433(4)	X(1)Cu(1)	X(2)'	104.0(1)	N(1)–H(1)	0	.65(7)	C(3)N(1)H(1)		122(6)
Cu(1)–X(2)'	2.376(4)	X(1)Cu(1)	n(1,2)	109.9(4)				C(4)N(1)H(1)		110(6)
Cu(1)–C(1)	2.09(1)	X(2)Cu(1)	X(2)'	96.5(1)	C(4)–N(2)	1	.32(1)	N(1)C(4)N(2)		122(1)
Cu(1)–C(2)	2.10(1)	X(2)Cu(1)	n(1,2)	115.7(4)	C(4)–N(3)	1	.35(1)	N(1)C(4)N(3)		121(1)
Cu(1)– <i>m</i> (1,2)	1.99(1)	X(2)'Cu(1)	m(1,2)	125.9(4)				N(2)C(4)N(3)		118(1)
		C(1)Cu(1)C	C(2)	37.4(5)	N(2)–C(5)	1	.45(1)	C(4)N(2)C(5)		124(1)
Cu(2)–X(1)	2.373(4)	X(1)Cu(2)	X(3)	107.3(1)	N(2)–H(2)	1	.04(8)	C(4)N(2)H(2)		112(4)
Cu(2)–X(3)	2.316(4)	X(1)Cu(2)	n(6,7)	130.3(5)				C(5)N(2)H(2)		115(4)
Cu(2)–C(6)	2.10(1)	X(3)Cu(2)	n(6,7)	121.9(5)	N(3)–H(3)	0	.9(1)	C(4)N(3)H(3)		108(8)
Cu(2)–C(7)	2.07(1)	C(6)Cu(2)	C(7)	37.7(6)	N(3)–H(4)	0	.6(2)	C(4)N(3)H(4)		118(10)
Cu(2)– <i>m</i> (6,7)	1.97(2)							H(3)N(3)H(4)		120(10)
C(1)–C(2)	1.34(2)	C(2)C(1)H	(1.1)	122(5)	C(5)–C(6)	1	.52(2)	N(2)C(5)C(6)		114(1)
C(1)–H(1.1)	1.01(9)	C(2)C(1)H	(1.2)	116(8)	C(5)–H(5.1)	0	.96(9)	N(2)C(5)H(5.1))	106(5)
C(1)–H(1.2)	1.0(1)	H(1.1)C(1)	H(1.2)	121(9)	C(5)–H(5.2)	1	.0(1)	N(2)C(5)H(5.2))	104(7)
C(2)–C(3)	1.52(2)	C(1)C(2)C	(3)	123(1)				C(6)C(5)H(5.1)		116(5)
C(2)–H(2,1)	0.9(1)	C(1)C(2)H	(2.1)	120(6)				C(6)C(5)H(5.2)		115(7)
		C(3)C(2)H	(2.1)	114(6)				H(5.1)C(5)H(5.	2)	100(9)
C(3)–N(1)	1.41(2)	C(2)C(3)N	(1)	113(1)	C(6)–C(7)	1	.34(2)	C(5)C(6)C(7)		124(1)
C(3)–H(3.1)	0.8(1)	C(2)C(3)H	(3.1)	107(8)	C(6)–H(6.1)	1	.0(1)	C(5)C(6)H(6.1)		118(6)
C(3)–H(3.2)	0.8(1)	C(2)C(3)H	(3.2)	104(7)				C(7)C(6)H(6.1)		117(6)
		N(1)C(3)H	(3.1)	105(8)	C(7)–H(7.1)	0	.7(1)	C(6)C(7)H(7.1)		108(10)
		N(1)C(3)H	(3.2)	115(7)	C(7)–H(7.2)	0	.96(8)	C(6)C(7)H(7.2)		124(5)
		H(3.1)C(3)	H(3.2)	113(10)				H(7.1)C(7)H(7.	2)	127(10)
Angle		φ, deg		Angle	φ, deg			Angle		φ, deg
X(2)Cu(1)X(2)'	Cu(1)'	0	Cu(1)	C(1)C(2)C(3)	-106.7		C(7)C(6)C(5)N(2)		-6.4
X(1)Cu(1)X(2)	Cu(1)'	105.8	C(1)C	(2)C(3)N(1)	-145.3		C(6)C(5)N(2)C(4)		-75.8
X(2)Cu(1)X(1)	Cu(2)	83.7	C(2)C	(3)N(1)C(4)	146.4		C(5)N((2)C(4)N(1)		-7.8
X(3)Cu(2)X(1)	Cu(1)	113.1	C(3)N	(1)C(4)N(3)	0.6	$C(5)N(2)C(4)N(3) -1^{-1}$		-172.7		
			Cu(2)	C(7)C(6)C(5)	-104.5		N(2)C((4)N(1)C(3)		178.9

Table 3. Bond lengths (*d*), bond angles (ω), and torsion angles (φ) in structure I*

* The $G(X_i)$ values are presented in Table 2.

** m(1,2) and m(6,7) are midpoints of the multiple C(1)=C(2) and C(6)=C(7) bonds, respectively.

ability of the nitrogen atoms, thereby ruling out the Cu– N interaction. The coordination sphere of the copper atoms incorporates either three halogen (X) atoms and the C=C bond [distorted tetrahedral coordination of Cu(1)] or two halogen atoms and the C=C bond [planar-trigonal coordination of the Cu(2) atom]. The axially nearly undistorted coordination sphere of Cu(1) [Cu(1)–X(1) 2.531(3) Å] corresponds to a considerable displacement of the copper atom from the plane of equatorial ligands ($\Delta = 0.58$ Å) and a large angle between this plane and the C=C bond ($\tau = 31^\circ$). Complete removal of the axial ligand in the case of Cu(2) corresponds to the virtually planar coordination ($\Delta \approx 0$ Å) and equatorial orientation of the C=C bond ($\tau = 3.6^\circ$) owing to the electronic factors. In both cases, the multiple C=C bond length is equal to 1.34(2) Å.

Structure I contains a centrosymmetric tetranuclear fragment $(Cu_2X_3)_2^{2-}$, in which the X(1) and X(2) atoms are bridging and the X(3) atom is terminal. Two independent $Cu_2X_3^-$ parts of the adjacent dimers are linked together via the π -coordination of two DAGUN⁺ cations to form chains along [100] (see figure). Compound I is structurally similar to the complex of copper(I) bromide with diallylammonium (DAAH⁺) [(C_3H_5)_2NH_2]Cu_2Br_3 (II) [4], although certain distinctions occur in the structures of their inorganic anions.

No. 5

1999

Fragment of structure **I**.

The independent $Cu_2Br_3^-$ fragments in **II** are linked together by the slightly elongated Cu–Br contacts to form chains oriented along [101]. As to the dimers similar to those in structure **I**, they can be distinguished only arbitrarily, with the $Cu_2Br_3^-$ ions being linked together via the *n* plane.

The bidentate organic ligands in structures **I** and **II** play the same role, namely, they join together the inorganic fragments. The DAGUN⁺ cation in structure **I** exhibits a considerable conformational flexibility, resulting in its asymmetry (see torsion angles in Table 3), whereas the DAAH⁺ cation in structure **II** has pseudoaxis 2 passing through the nitrogen atom.

In the three-dimensional structure of **I**, the individual [100]-directed $[(DAGUN)_2Cu_4X_6]_n$ chains are united by the branched system of hydrogen bonds of the C–H···X and N–H···X types (more developed than in II). The geometries of the most important H bonds in structure I are presented in Table 4.

In the type of organic ligand, compound **I** is related to the complexes of copper(I) halides with the *S*-allylisothiouronium cation, $[C_3H_5SC(=NH_2)_2]CuX_2$ (X = Cl, Br) [5], and allylguanidinium cation, $[C_3H_5NHC(=NH_2)_2]CuBr_2$ and $[C_3H_5NHC(=NH_2)_2]$ $CuCl_{2-x}Br_x$ (x = 0.516) [6]. In these complexes, the ligand is also coordinated via the C=C group, and the H atoms at the nitrogen atoms form a system of hydrogen bonds.

The isolated dimeric $Cu_4Cl_6^{2-}$ fragment also occurs in the polycation copper(I) complex with allylammonium (AAH⁺), [$Cu_4Cl_6(AAH)_4$]SiF₆ [10]. Owing to the

A–H…B bond*		AUR angle deg		
	Н…В	A···B	A–H	- AID algle, deg
C(2)–H(2.1)···X(3)	3.0(1)	3.63(1)	0.9(1)	126(8)
$C(5)-H(5.2)\cdots X(2)$	2.9(1)	3.57(1)	1.0(1)	130(9)
$N(1)-H(1)\cdots X(2)$	2.74(7)	3.33(1)	0.65(7)	154(7)
N(2)-H(2)···X(3)	2.30(8)	3.32(1)	1.04(8)	168(6)
N(3)-H(3)···X(3)	2.6(1)	3.52(1)	0.9(1)	162(10)
N(3)–H(4)····X(1)	2.8(2)	3.36(1)	0.6(2)	153(10)

Table 4. Geometry of hydrogen bonds in structure I

* The $G(X_i)$ values are presented in Table 2.

predominant role of the outer-sphere SiF_6^{2-} anion in the

formation of the structure, the $Cu_4Cl_6^{2-}$ fragment is composed in a manner different from that in I and consists of the Cu_4Cl_4 cycle and two terminal Cl atoms. In

the $[Cu_2Cl_3(AAH)_2]CuCl_2$ complex [11], the $Cu_2Cl_3^$ anion is monomeric and has the C_2 symmetry. Thus, the inorganic fragment $(Cu_2X_3)_n$ (X = Cl, Br) is present in both polycation and zwitterion [12] complexes (I and II).

ACKNOWLEDGMENTS

This work was supported by the International Scientific Educational Program, grant no. GSU083130.

REFERENCES

- 1. Mys'kiv, M.G., Oliinik, V.V., Zavalii, P.Yu., et al., Metalloorg. Khim., 1989, vol. 2, no. 6, p. 1225.
- 2. Oliinik, V.V., Mys'kiv, M.G., Mazus, M.D., et al., Zh. Strukt. Khim., 1992, vol. 33, no. 1, p. 121.

- 3. Oliinik, V.V., Mys'kiv, M.G., and Pecharskii, V.K., *Zh. Strukt. Khim.*, 1993, vol. 34, no. 6, p. 43.
- Oliinik, V.V., Mys'kiv, M.G., and Aksel'rud, L.G., *Koord. Khim.*, 1996, vol. 22, no. 1, p. 71.
- Oliinik, V.V., Shollmeier, D., Filinchuk, Ya.E., and Mys'kiv, M.G., *Koord. Khim.*, 1998, vol. 24, no. 1, p. 52.
- 6. Filinchuk, Ya.E. and Mys'kiv, M.G., *Koord. Khim.*, 1999, vol. 25, no. 1, p. 55.
- 7. Weygand, C. and Hilgetag, G., *Organisch-chemische Experimentierkunst*, Leipzig: Johann Ambrosius Barth, 1964.
- Braun, C.E., J. Am. Chem. Soc., 1933, vol. 55, no. 3, p. 1280.
- Aksel'rud, L.G., Grin', Yu.N., Zavalii, P.Yu., et al., Paket programm dlya strukturnogo analiza kristallov CSD. Obshchee opisanie (CSD Program Package for Crystal Structure Analysis. General Description), Lvov: Lvov Gos. Univ., 1990.
- 10. Oliinik, V.V., Goreshnik, E.A., Pecharskii, V.K., *et al.*, *Zh. Strukt. Khim.*, 1993, vol. 34, no. 4, p. 141.
- 11. Oliinik, V.V., Koord. Khim., 1999, vol. 25, no. 1, p. 60.
- 12. Oliinik, V.V. and Goreshnik, E.A., Zh. Strukt. Khim., 1994, vol. 35, no. 5, p. 109.